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LEITER TO THE EDITOR 

Aggregation by attractive particlecluster interaction 

A Block, W van Blah and H J Schellnhuber 
Fachbereich Physik and lnstitut ffir Chemie und Biologic des Meeres, Universitat 
Oldenburg, W-29W Oldenburg, Federal Republic of Germany 

Received I March 1991 

Abstnd.  A quasideterministic irreversible growth model is studied, where aggregates are 
generated by attractive cluster-panicle forces proportional to rC=. It is shown that fractal 
dimensions and growth site probability measures of the resulting fractal structures strongly 
depend on the parameter a. Comparison with experimental results indicates that this model 
represents a funher Step towards realistic simulations of growth processes. 

The investigation and modelling of irreversible growth phenomena has become a 
mainstream topic only in the last decade. Aggregation products like colloids, gels, 
soot, dust and flakes (e.g. atmospheric and marine snow [l]), although ubiquitous in 
nature, were previously largely ignored or regarded as intractable ‘messy effects‘ (see, 
however, and for instance [2]). The recent reversal of opinion has two main reasons. 
The first one is the key observation that the structures grown by stochastic processes 
are often not simply disordered, but exhibit non-trivial statistical scale-invariance over 
several orders of magnitude. The second reason is the introduction of the concept of 
fractality by Mandelbrot [3], which provides a quantitative framework for the descrip- 
tion and classification of the types of dilational symmetry encountered here. 

Meanwhile a whole field has been established, on the basis of these insights, which 
keeps on producing new information at a great pace (for reviews, see [4-81). Very 
recently the question ‘Why does nature organize itself predominantly in fractal shapes? 
has attracted more and more attention; the concept of self-organized criticality may 
provide one possible preliminary answer [9]. 

Another way to shed light on this problem is the simulation of growth processes 
by simple, non-trivial computer models. They often produce very natural-looking 
aggregates whose fractal dimension D happens to agree amazingly well with experi- 
mental findings [4-71. Examples for such successful models are diffusion-limited 
particle-cluster aggregation (DLA) [ 101, ballistic aggregation [ l l ,  121, cluster-cluster 
aggregation (CCA) [13], and various modifications of these scenarios. Up to now, 
however, a generally accepted ‘canonical’ theory for the description of fractal growth 
has not yet emerged. 

On the other hand, some basic ingredients for the formation of scale-invariant 
aggregates can be distilled from extensive computer simulations. An essential require- 
ment in the context of particle-cluster aggregation concerns the fractal dimension d, 
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of the particle trajectories, which is defined by (see, for example, [14]) 

( r2 (  t , , ) ) -  t2./"-. (1) 

Here ( r*( t . ) )  is the mean square distance of the random walker from its starting point 
and 1, denotes the number of time steps. 

Brownian motion ( d ,  = 2) generates typical tenuous DLA clusters ( D  = 1.7 for 
Euclidean dimension d = 2); linear trajectories ( d ,  = 1) with randomly chosen direc- 
tions lead to compact structures ( D =  d )  characteristic of ballistic aggregates [IS]. By 
means of Levy-flight particle trajectories with d,c [ I ,  21 one can continuously inter- 
polate between both scenarios and the corresponding fractal dimensions of the 
aggregates [16]. In all cases, however, an isotropic probability distribution for the 
allowed particle movements is essential. Any symmetry-breaking bias, like a drift 
towards the centre of the cluster, gives rise to compact structures and is thus equivalent 
to ballistic aggregation 2171. 

It seems that a crucial morphologic element of diffusion-limited particle-cluster 
aggregation, namely the screening of the fjords by the tips of the structure, takes full 
effect when the particle trajectory is definitely space-filling and statistically isotropic. 
But this precondition is only relevant if the attaching particle has no 'information' 
whatsoever about the structure of the already existing cluster. By way of contrast, the 
necessary screening effect can also be realized as a property of the whole system by 
introducing a physical interaction between cluster and growth particle. This means 
that tenuous fractals may be grown via deterministic trajectories, which clearly have 
d,= 1 and preferential directions! 

In this paper we present a simple, novel growth model with interactions governed 
by the general power law r 7 .  This allows us to generate deliberately fractal aggregates 
with continuously tunable dimension that is controlled by the forced-induced screening 
of the inner regions of the cluster. The scaling properties of the growth-site probability- 
distribution, which is a powerful means of characterizing fractal growth products [ 181, 
also depend strongly on the interaction chosen. The model is not only interesting from 
a conceptual point of view: for certain values of the force parameter a it directly 
simulates realistic physical situations. In fact, the trajectories of particles in most 
natural growth processes are subject t o  deterministic, interaction-induced influences 
in addition to more or iess severe stochastic perturbations. 

Most simulations of cluster-particle growth d o  not take into account that the 
trajectories of the constituent monomers are usually affected by the already existing 
aggregate. A more realistic approach was pursued by Ansell and Dickinson [ 191 in 
order to model the aggregation of charged colloidal particles. Their basic simulation 
tool was a cluster-cluster aggregation scenario. The dynamics of the constituents was 
modeiied by Brownian moiion in ihe iiquid under ihe simuiianeous influence of 
interactive forces that are composed of a hard-core repelling term and a long-range 
Van der Waals attraction. Because of the N2 calculations per time step required for 
N-particle CCA, however, only relatively small systems could be simulated. Therefore 
it is difficult to draw definite conclusions concerning scaling behaviour from the results 
presented there. Quite recently, Meakin and Muthukumar [20] have presented a more 
>"p,,,sr,caLr;" rpp'U"LL1 L U  C",,U," I u I I I I a L I U I I  "LlDC" U11 all L I * " " L Y L b  .IYI.I"..- ..... a l l "  

cluster-cluster-aggregation (RLCCA) scheme. 
Our model is constructed on a similar physical basis, but is much easier to handle 

due to various conceptual simplifications. It is well known that the reasonable assump- 
tion of decreasing mobility with cluster size leads to a transition from the CCA scenario 
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to a model describing the diffusion-limited aggregation of monomers to more or less 
immobile clusters. Therefore it is both justified and useful to reduce the multiple 
interactions between all the constituents of the sample to the simple force law 

Here F, denotes the force exerted by the j t h  member in the cluster at position 5 on 
the not-yet-attached ( N  + I)th particle at position rN+, , The parameter a > 0 controls 
the decay of the interaction with distance. 

As a consequence, the growth process can be simulated as follows: a seed particle 
is initially placed at the origin of our d-dimensional Euclidean space and the growth 
particles are successively launched from stochastically chosen positions on the ( d  - 1)- 
dimensional surface of a hypersphere with radius R,. The new position r N + , ( f  +At) 
of the ( N + l ) t h  growth particle after a time step of length Af is calculated from the 
forces and the old position r N + , ( f )  according to 

N 

r,+,(f+At) = r,+,(f)+constantx A f  e ( r N + , ( f ) ) .  (3) 
, = I  

This is a quasi-kinetic ansatz to describe the particle trajectories with dimension d, = 1: 
the constant in (3) is assumed to be y-', where y is a velocity-dependent friction 
coefficient. Our ansatz is physically correct whenever the relaxation time T = mly 
( m  = mass of the particle) and the magnitude of V F are small. 

Let us denote by R,, the current maximal distance of cluster particles from the 
origin. At points r satisfying lr/ >> Re, the resulting force vector is quite small. Therefore 
it is ineffective to calculate position increments for a fixed time step A?; instead we 
tune Af to enforce a fixed step length s = F,,,x At = constant, where F,,, = IX;, 51. s 
has to he chosen small enough to rule out artificial distortions of the cluster geometry. 
Suitable step lengths were determined empirically as follows: for a fixed interaction 
exponent a an ensemble of clusters was generated by the aggregation algorithm 
described above for varying s. For each cluster the box-counting dimension or capacity 
D. (see, for example, [21]), which is defined as 

In N ( E )  
D, = lim ~ 

E - o  In(l/E) (4) 

was calculated. Here N ( E )  is the number of non-empty cells when the sample is 
covered by a hypercubic lattice of lattice constant E. The results for d = 2 and a = 3 
are summarized in table 1. 

Table 1. Dependence of fractal dimension D, an length steps s for d = 2  and CI = 3 .  The 
radius of the growth particles is 1.5, N = 6000 in al l  cases. 

Length step s D. 

2.0 1.57 
1.5 1.58 
1.0 1.55 
0.5 1.49 
0.2 1.49 
0.1 1.48 
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We clearly see that D. rapidly converges with decreasing s and remains almost 
unaffected by further reduction below s < i = 0.4 x particle radius. Using the box- 
counting dimension as a sensitive structural probe, we can detect an optimal .?= ;(d, a) 
under general conditions in an analogous way. 

The choice of the launching radius R,  may also influence the structure of the 
aggregate. Figure 1 shows a typical product of our growth model. The trajectories of 
the particles, which started from a homogeneous distribution of initial points, are 
explicitly indicated in this picture. 

One can clearly realize that the density of trajectories-or equivalently, field 
lines-varies considerably in the vicinity of the cluster. Thus, if the particles are released 
from positions that are too close to the cluster, then they get attached to certain surface 
sites of the cluster with unphysically high probability. If they start, on the other hand, 
far away from the aggregate, then they are able to scan the overall force field and to 

will settle to a definite quality and quantity with increasing R, .  
The aggregate depicted in figure 1 exhibits non-trivial scaling behaviour similar to 

DLA structures, despite the fact that the morphogenetic mechanism is rather of ballistic- 

adj2sttheir mnves accnrding!y. .As I cnnsequence, the s!ruc!urc .Ed its het.! dimensiun 

150 
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i r n  -1au - io-100 -50 0 50 100 150 
Figure 1. A small aggregate, d =2,  N = 1000, grown according to the rules given in the 
text. The trajectories associated with equidistant starling-points are also depicted to give 
an estimate of the growth-site distribution measure. 
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Figure 2. Comparison of the lines of the diffusion field (in black) with the lines of the 
n = 1 interaction field (in red) as defined by a typical fractal DLA cluster (N= 1000). 

(Facing page L1040) 
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aggregation type. But in contrast to the ballistic-aggregation scenario, the particles 
head for the centre of force-not of the aggregate! On the other hand, if we add a 
sufficiently large random displacement vector to the right-hand side of (3), then the 
process would generate true DLA clusters. 

Even without such an additional stochastic element it may seem that our model is 
equivalent to DLA in the special case a = 1 ( d  = 2), as particle aggregation is governed 
by a potential U satisfying the Laplace equation. This is not true, however: the DLA 
potential has to satisfy U ( p )  = 0 at all perimeter sites p of the cluster, which behaves 
like a conductor. Our aggregates rather resemble dielectrics for any choice of a and 
the potential is directly obtained from the spatial distribution of the constituents! The 
a = 1 structures may also be interpreted as conglomerates of gravitational masses in 
ZD Euclidean space. It is quite instructive to elaborate the differences between this 
case and DLA a little bit further. To that end we have calculated the Laplacian fields 
resulting from the two corresponding boundary conditions for the same fractal cluster 
(produced by DLA). Figure 2 demonstrates that the interactive scenario induces field 
lines, which may be tangent to the perimeter and penetrate much deeper into the 
aggregate. 

The model presented here is closely related to physical reality, in particular in the 
case of a = 6 (Van der Waals interaction) or a = 3 (direct dipole-dipole interaction). 

Figure 3 contrasts aggregates that were generated by our algorithm for different 
values of the interaction exponent. The distance of the launching positions from the 
seed particle was chosen suficiently large to guarantee that the field lines meet the 
starting surface in an isotropic and radial way ( R ,  = 2 x Re,).  

The qualitative dependence of the structure on a is obvious. For d = 2 the variation 
of the fractal dimension D, with the interaction exponent a was systematically 
investigated. The results are summarized in table 2 and especially demonstrate the 
strong reduction of D. with increasing a. 

The influence of a is even more felt in the spectrum of scaling indices for the 
growth site probability density, which defines a measure on the fractal in the limit 
N + m .  This measure may be evaluated by test particles indicating potential growth 
sites without actually contributing to the cluster [22]. For finite samples consisting of 
N elements it is approximated by 

where N , ( E )  is the number of test particles ending in the uth box of edge E. The 
resulting multifractal measure [23] can be characterized through the spectrum of 
generalizedfractal dimensions D,(q),  q E R [24], defined as 

1 In Z::;'[p,(E)]'  
D , (q)  = lim - 

r - 0  q - 1 In E 

Figure 4 depicts the result of the multifractal analysis of the growth zones of 
aggregates for d = 2, a = 2 and 5; this analysis was carried out using a novel, effective 
box-counting algorithm [251. 

Our general finding is that the spectrum of dimensions D B ( q )  strongly depends on 
a and that, in particular, the limit dimension D.(m)-which quantifies the scaling 
behaviour of the densest regions of the growth measure-monotonically decreases with 
increasing a to reach the value 0 for 01 + m. 
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Figure 3. Aggregates grown for different exponents OL of the attractive panicle-cluster 
interaction.(o)u=2,(b) a = 3 , ( c )  m = 4 , ( d )  a=5.  Inal learesd=Zand N=12000. 

Table 2. Effect of OL on D.. For fixed OL the fractal dimension is calculated by averaging 
over eight clusters consisting of lo4 panicles each. The value 0.2 is chosen for the step 
length I. 

Exponent OL Fractal dimension D. 

1.70+0.0s 
3 1.49+0.02 
4 1.34 * 0.01 
5 1.27 +0.01 
6 1.22+0.01 

The latter limit means that cluster-particle aggregation is dominated by the minimal 
distance in (Z), so our model crosses over to growth by shortest-path travel [26]. Note, 
however, that such a scenario rather sensitively depends on the initial conditions in 
an off-lattice realization, while it is prone to artefacts when studied on lattices. For 
instance, a hexagonal lattice induces smaller fractal dimensions than a quadratic one. 
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Figure 4. Comparison of the spectra of  generalized fractal dimensions D,,(q).  q E R, for 
aggregates generated with U = 2 and e = 5. 

The main result of our investigation is that the introduction of interactions between 
particles and clusters makes it possible to grow fractal aggregates in a deterministic 
way; the dimensions of structure and growth measure depend strongly on the force 
law and differ drastically from DLA in the limit of large a. Our findings are consistent 
with experiments on aggregation of charged silica colloids on a surface [27], where 
the measured fractal dimension is significantly below the predictions of the Witten- 
Sander model. By way of contrast, our results for the Van der Waals exponent cy = 6  
(see table 2) are only slightly smaller than the data produced in the experiment. The 
residual deviation can be explained by two facts. (i) Real particles are distributed more 
or less homogeneously on the liquid’s surface and may be incidentally close to growth 
nuclei. Therefore they tend to penetrate into the fjords of the aggregates with higher 
probability than the particles in our conceptually simpler computer simulation. (ii) 
Deterministic trajectories will he perturbed in real experiments by stochastic influences 
of Brownian type. This effect will also increase the fractal dimension of the aggregates. 

We emphasize that our simulations offer only one possible explanation for the 
findings of Hurd et a1 [27]. Final answers certainly require further scrutiny of the 
experimental set-up. 

Our scenario also provides, on the other hand, efficient ways to determine the 
scaling behaviour of the negative exponents ( q < O )  of the growth site probability 
measure of aggregates. The basic idea is to track down the field line bundles emanating 
from the massively screened regions; this procedure works particularly well in the 
Laplacian cases [28]. Details will be presented elsewhere. The behaviour of negative 
moments is a topic of intense and controversial discussion, especially in the context 
of possible phase transitions in  the DLA model (see, for example, [29]). 

Financial support by the Federal Minister for Science and Technology (BMFT-grant 
MFU 05798) is gratefully acknowledged. We would also like to thank A Bunde, M 
Nauenberg and Pal Rujan for helpful discussions. 
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